1) Determine the diffusion controlled rate constant for two reacting molecules in aqueous solution at $25^{\circ} \mathrm{C}$ where each has a $5.0 \AA$ radius. Note that the viscosity of water at $25^{\circ} \mathrm{C}$ is approximately 0.9 cP , where $1 \mathrm{cP}=10^{-3} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$. Next, determine the diffusion controlled rate constant for two molecules where one has a radius of $1.0 \AA$ and the other has a radius of $9.0 \AA$. By what percentage does the rate change for the molecules of unequal size? How do your results compare to that from the theoretical limit of $8 \mathrm{RT} / 3 \eta$?
2) For the ozone decomposition scheme

$$
\begin{aligned}
& \quad \mathrm{O}_{3} \xrightarrow{k_{1}} \mathrm{O}_{2}+\mathrm{O} \\
& \mathrm{O}_{2}+\mathrm{O} \xrightarrow{k_{2}} \mathrm{O}_{3} \\
& \mathrm{O}_{3}+\mathrm{O} \xrightarrow{k_{3}} 2 \mathrm{O}_{2}
\end{aligned}
$$

use the steady state approximation for [O] to show

$$
\frac{d\left[\mathrm{O}_{3}\right]}{d t}=\frac{-2 k_{1} k_{3}\left[\mathrm{O}_{3}\right]^{2}}{k_{2}\left[\mathrm{O}_{2}\right]+k_{3}\left[\mathrm{O}_{3}\right]}
$$

What conditions will make this reaction appear to be first order in $\left[\mathrm{O}_{3}\right]$?
3) The following gas phase reaction at 300 K is first order at high concentration of $\mathrm{CH}_{3} \mathrm{NC}$ but second order at low concentration.

$$
\mathrm{CH}_{3} \mathrm{NC} \xrightarrow{k} \mathrm{CH}_{3} \mathrm{CN}
$$

a) Propose a reaction scheme that accounts for these observations. (Hint: look at the Lindemann mechanism in our book, section 19.3.) b) Apply steady state theory to your reaction scheme to develop a differential rate law that accounts for your observations. c) The pre-exponential factor for this reaction is $3.92 \times 10^{13} \mathrm{~s}^{-1}$. Determine ΔS^{\ddagger} and explain whether your result is consistent with your proposed mechanism.
4) The molecule I_{3}^{-}is linear and undergoes unimolecular dissociation according to the following reaction.

$$
\mathrm{I}_{3}^{-} \xrightarrow{k} \mathrm{I}_{2}+\mathrm{I}^{-}
$$

There are two possible transition states: linear $\mathrm{I}_{3}{ }^{-}$(with elongated bonds) or bent $\mathrm{I}_{3}{ }^{-}$.
a) Use transition state theory to determine the temperature dependence of A (the pre-exponential factor) for each case. Treat vibrational modes as being in the ground state. b) Would you be able to distinguish these cases experimentally? c) Develop an expression for ΔS^{\ddagger} for each case.

From Engel \& Reid $3^{\text {rd }}$ Edition, Chapter 18, Problems: 1, 2, 17, 23, 26, 27

