1) Show that the function for $N(x, t)$ is a solution of the diffusion equation.

$$
N(x, t)=\frac{N_{o}}{2 A \sqrt{\pi D t}} e^{\frac{-\frac{\tau^{2}}{\Delta t}}{t}}
$$

2) Given the relationship between flux J and concentration gradient that we developed in class

$$
J(x, t)=-D \frac{d N(x, t)}{d x}
$$

use the expression for $N(x, t)$ from problem 1 to calculate the flux. Sketch $J(x, t)$ vs x for a value of $t>0$, thereby showing that the flux has a maximum. How do you interpret this result? Next, find the value of x at the flux maximum and determine how its position varies with time. You should get a familiar result.
3) The radial distance from a starting point in 3D is related to the Cartesian coordinates by

$$
r^{2}=x^{2}+y^{2}+z^{2}
$$

If a particle is undergoing diffusion in 3 D , show that $r_{r m s}=\sqrt{6 D t}$. What would be the displacement if the particle was confined to a 2D surface?

From Engel \& Reid $3{ }^{\text {rd }}$ Edition, Chapter 17, Problems: 1, 4, 7, 8, 10, 13, 24, 32, 33

