Chemistry 163C Problem Set \#7

Due Thursday, 5/22 at the beginning of class

1) Think of collection of molecules adsorbed to a surface, but with mobility along the surface, as a two-dimensional gas. a) Develop a 2D Maxwell Distribution following the same strategy used in class for 3D. Note that the volume element in polar coordinates is $v d v d \phi$. b) Sketch your distribution. c) Find the formula for the most probable speed and the average speed. How does this depend on temperature?
2) At 1.0 atm , air contains $78 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$. Determine the total collision frequencies $\mathrm{Z}_{\mathrm{N}_{2} \mathrm{~N}_{2}} \mathrm{Z}_{\mathrm{O}_{2} \mathrm{O}_{2}}$ and $\mathrm{Z}_{\mathrm{O}_{2} \mathrm{~N}_{2}}$.
3) A 1.0 L container filled with O_{2} has an initial pressure of 1.0 atm . If you punch a hole in the container that measures $1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$, what will be the pressure in the container after one hour? Assume that there is no backflow through the hole into the container.

From Engel \& Reid $3{ }^{\text {rd }}$ Edition, Chapter 16, Problems: 3, 9, 14, 23, 25, 28, 29

