Chemistry 163C Problem Set \#2

Due Thursday, $4 / 17$ at the beginning of class

1) If you roll five dice at the same time, how much more likely are you to roll the numbers $\{12345\}$ than $\{22444\}$? (You can assume that it is equally probable to observe any one of the six sides of a single die.) Why is this so? We showed in class that entropy S is given by the expression $\mathrm{S}=\mathrm{k} \ln \mathrm{W}$, where k is Boltzmann's constant and W is the weight of the most probable configuration. What is the "entropy" for each of the two outcomes?
2) Consider a two level system where the ground state is nondegenerate and the excited state of energy ε is four fold degenerate. Write down the partition function and mathematical expressions for the populations of the two levels. Plot the partition function and the populations as a function of temperature from $\mathrm{T}=0$ to T $\rightarrow \infty$. What value do you get for q at $\mathrm{T} \rightarrow \infty$?
3) Given N dice, show that the number of ways of observing n_{1} ones, n_{2} twos, etc. is given by the formula:

$$
\mathrm{W}=\frac{\mathrm{N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\mathrm{n}_{3}!\mathrm{n}_{4}!\mathrm{n}_{5}!\mathrm{n}_{6}!}
$$

Hint: Consider a product of binomial expressions

$$
\frac{N!}{n!(N-n)!}
$$

for n_{1} ones from N dice, n_{2} twos from $\mathrm{N}-\mathrm{n}_{1}$ dice, n_{3} threes from $\mathrm{N}-\mathrm{n}_{1}-\mathrm{n}_{2}$ dice, etc.
4) Look up Stirling's approximation for N ! in your text. Compute $\ln (\mathrm{N}!)$ and Stirling's approximation for $\ln (\mathrm{N}!)$ for $\mathrm{N}=10,20,30,40,50$ and 60 and plot the outcomes against each other. Does the approximation work for large N ?

From Engel \& Reid $3{ }^{\text {rd }}$ Edition, Chapter 13: 2, 7, 8, 9, 12, 13, 15, 20, 21, 25

